enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General linear group - Wikipedia

    en.wikipedia.org/wiki/General_linear_group

    The infinite general linear group or stable general linear group is the direct limit of the inclusions GL(n, F) → GL(n + 1, F) as the upper left block matrix. It is denoted by either GL( F ) or GL(∞, F ) , and can also be interpreted as invertible infinite matrices which differ from the identity matrix in only finitely many places.

  3. Linear group - Wikipedia

    en.wikipedia.org/wiki/Linear_group

    A group G is said to be linear if there exists a field K, an integer d and an injective homomorphism from G to the general linear group GL d (K) (a faithful linear representation of dimension d over K): if needed one can mention the field and dimension by saying that G is linear of degree d over K.

  4. Projective linear group - Wikipedia

    en.wikipedia.org/wiki/Projective_linear_group

    A noteworthy subgroup of the projective general linear group PGL(2, Z) (and of the projective special linear group PSL(2, Z[i])) is the symmetries of the set {0, 1, ∞} ⊂ P 1 (C) [note 6] which is known as the anharmonic group, and arises as the symmetries of the six cross-ratios.

  5. Unitary group - Wikipedia

    en.wikipedia.org/wiki/Unitary_group

    The unitary group is a subgroup of the general linear group GL(n, C), and it has as a subgroup the special unitary group, consisting of those unitary matrices with determinant 1. In the simple case n = 1, the group U(1) corresponds to the circle group, isomorphic to the set of all complex numbers that have absolute value 1, under multiplication ...

  6. Affine group - Wikipedia

    en.wikipedia.org/wiki/Affine_group

    Given the affine group of an affine space A, the stabilizer of a point p is isomorphic to the general linear group of the same dimension (so the stabilizer of a point in Aff(2, R) is isomorphic to GL(2, R)); formally, it is the general linear group of the vector space (A, p): recall that if one fixes a point, an affine space becomes a vector space.

  7. Classical group - Wikipedia

    en.wikipedia.org/wiki/Classical_group

    The general linear group GL n (R) is the group of all R-linear automorphisms of R n. There is a subgroup: the special linear group SL n (R), and their quotients: the projective general linear group PGL n (R) = GL n (R)/Z(GL n (R)) and the projective special linear group PSL n (R) = SL n (R)/Z(SL n (R)).

  8. p-group - Wikipedia

    en.wikipedia.org/wiki/P-group

    The quotient G/Φ(G) is an elementary abelian group and its automorphism group is a general linear group, so very well understood. The map from the automorphism group of G into this general linear group has been studied by Burnside, who showed that the kernel of this map is a p-group.

  9. Group action - Wikipedia

    en.wikipedia.org/wiki/Group_action

    The group operations are given by multiplying the matrices from the groups with the vectors from K n. The general linear group GL(n, Z) acts on Z n by natural matrix action. The orbits of its action are classified by the greatest common divisor of coordinates of the vector in Z n.