enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    In both the global and local cases, the concept of a strict extremum can be defined. For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we ...

  3. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  4. Parks–McClellan filter design algorithm - Wikipedia

    en.wikipedia.org/wiki/Parks–McClellan_filter...

    The extrema must occur at the pass and stop band edges and at either ω=0 or ω=π or both. The derivative of a polynomial of degree L is a polynomial of degree L−1, which can be zero at most at L−1 places. [3] So the maximum number of local extrema is the L−1 local extrema plus the 4 band edges, giving a total of L+3 extrema.

  5. Hilbert–Huang transform - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Huang_transform

    Identify all the local extrema in the test data. Connect all the local maxima by a cubic spline line as the upper envelope. Repeat the procedure for the local minima to produce the lower envelope. The upper and lower envelopes should cover all the data between them. Their mean is m 1. The difference between the data and m 1 is the first ...

  6. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In multiple dimensions the secant equation is under-determined, and quasi-Newton methods differ in how they constrain the solution, typically by adding a simple low-rank update to the current estimate of the Hessian. The first quasi-Newton algorithm was proposed by William C. Davidon, a physicist working at Argonne National Laboratory.

  7. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    The detection and description of local image features can help in object recognition. The SIFT features are local and based on the appearance of the object at particular interest points, and are invariant to image scale and rotation. They are also robust to changes in illumination, noise, and minor changes in viewpoint.

  8. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]

  9. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    These equations for solution of a first-order partial differential equation are identical to the Euler–Lagrange equations if we make the identification = ˙ ˙. We conclude that the function ψ {\displaystyle \psi } is the value of the minimizing integral A {\displaystyle A} as a function of the upper end point.