Search results
Results from the WOW.Com Content Network
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
Qualifies anything that is sufficiently precise to be translated straightforwardly in a formal system. For example. a formal proof, a formal definition. generic This term has similar connotations as almost all but is used particularly for concepts outside the purview of measure theory.
The word "formal" indicates that the series need not converge. In mathematics, and especially in algebra, a formal series is an infinite sum that is considered independently from any notion of convergence and can be manipulated with algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.).
Functional notation: if the first is the name (symbol) of a function, denotes the value of the function applied to the expression between the parentheses; for example, (), (+). In the case of a multivariate function , the parentheses contain several expressions separated by commas, such as f ( x , y ) {\displaystyle f(x,y)} .
A term is a constant or the product of a constant and one or more variables. Some examples include ,,, The constant of the product is called the coefficient. Terms that are either constants or have the same variables raised to the same powers are called like terms. If there are like terms in an expression, one can simplify the expression by ...
In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. [1] In terms of set-builder notation , that is A × B = { ( a , b ) ∣ a ∈ A and b ∈ B } . {\displaystyle A\times B=\{(a,b)\mid a\in A\ {\mbox{ and }}\ b\in B\}.} [ 2 ] [ 3 ]
In fact, if we consider these as formal generating functions, the existence of such a formal Euler product expansion is a necessary and sufficient condition that a(n) be multiplicative: this says exactly that a(n) is the product of the a(p k) whenever n factors as the product of the powers p k of distinct primes p.
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets). The capitalization of some of these abbreviations is not standardized – different authors might use different capitalizations.