Search results
Results from the WOW.Com Content Network
From the conjecture and the proof of the fundamental theorem of calculus, calculus as a unified theory of integration and differentiation is started. The first published statement and proof of a rudimentary form of the fundamental theorem, strongly geometric in character, [ 2 ] was by James Gregory (1638–1675).
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...
This states that differentiation is the reverse process to integration. Differentiation has applications in nearly all quantitative disciplines. In physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of the velocity with respect to time is acceleration.
Integration, the process of computing an integral, is one of the two fundamental operations of calculus, [a] the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide ...
It can also be interpreted as a precise statement of the fact that differentiation is the inverse of integration. The fundamental theorem of calculus: If a function f {\displaystyle f} is defined on a partition of the interval [ a , b ] {\displaystyle [a,b]} , b = a + n h {\displaystyle b=a+nh} , and if F {\displaystyle F} is a function whose ...
The problem of the differentiation of integrals is much harder in an infinite-dimensional setting. Consider a separable Hilbert space ( H , , ) equipped with a Gaussian measure γ . As stated in the article on the Vitali covering theorem , the Vitali covering theorem fails for Gaussian measures on infinite-dimensional Hilbert spaces.
The Fractional Calculus; Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering. Vol. V. Academic Press. ISBN 0-12-525550-0. Podlubny, Igor (1998). Fractional Differential Equations.
In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.