Search results
Results from the WOW.Com Content Network
In mathematical analysis, the unit interval is a one-dimensional analytical manifold whose boundary consists of the two points 0 and 1. Its standard orientation goes from 0 to 1. The unit interval is a totally ordered set and a complete lattice (every subset of the unit interval has a supremum and an infimum).
An indifference graph, formed from a set of points on the real line by connecting pairs of points whose distance is at most one. In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other. [1]
The union of two intervals is an interval if and only if they have a non-empty intersection or an open end-point of one interval is a closed end-point of the other, for example (,) [,] = (,]. If R {\displaystyle \mathbb {R} } is viewed as a metric space , its open balls are the open bounded intervals ( c + r , c − r ) , and its closed balls ...
In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval [0,1] such that for every point : there is a neighbourhood of x {\displaystyle x} where all but a finite number of the functions of R {\displaystyle R} are 0, and
In classical mathematics, characteristic functions of sets only take values 1 (members) or 0 (non-members). In fuzzy set theory , characteristic functions are generalized to take value in the real unit interval [0, 1] , or more generally, in some algebra or structure (usually required to be at least a poset or lattice ).
The graph of the Cantor function on the unit interval. In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous.It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If μ is greater than the square root of 2, these intervals merge, and the Julia set is the whole interval from μ − μ 2 /2 to μ/2 (see bifurcation diagram). If μ is between 1 and 2 the interval [μ − μ 2 /2, μ/2] contains both periodic and non-periodic points, although all of the orbits are unstable (i.e. nearby points move away from ...