enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    Coprime integers. In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. [1] Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. [2]

  3. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a ...

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n .

  5. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  6. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    In mathematics, the prime number theorem ( PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard [1] and ...

  7. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Euclid's theorem. Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work Elements. There are several proofs of the theorem.

  8. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    The theorem states that each rational solution x = p ⁄ q, written in lowest terms so that p and q are relatively prime, satisfies: p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n.

  9. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers: [note 1] Euclid's lemma — If a prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a or b . For example, if p = 19, a = 133, b = 143, then ab = 133 × 143 = 19019, and since this ...