Search results
Results from the WOW.Com Content Network
Eigendecomposition of a matrix. In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
The eigenvalue and eigenvector problem can also be defined for row vectors that left multiply matrix . In this formulation, the defining equation is. where is a scalar and is a matrix. Any row vector satisfying this equation is called a left eigenvector of and is its associated eigenvalue.
Perron–Frobenius theorem. In matrix theory, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique eigenvalue of largest magnitude and that eigenvalue is real. The corresponding eigenvector can be chosen to have strictly positive components ...
Jacobi eigenvalue algorithm. In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix (a process known as diagonalization). It is named after Carl Gustav Jacob Jacobi, who first proposed the method in 1846, [1] but only became widely ...
Normal matrix. In mathematics, a complex square matrix A is normal if it commutes with its conjugate transpose A*: {\displaystyle A {\text { normal}}\iff A^ {*}A=AA^ {*}.} The concept of normal matrices can be extended to normal operators on infinite-dimensional normed spaces and to normal elements in C*-algebras.
The lambdas are the eigenvalues of the matrix; they need not be distinct. In linear algebra, a Jordan normal form, also known as a Jordan canonical form, [1][2] is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis.
A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix. [2] In particular, a tridiagonal matrix is a direct sum of p 1-by-1 and q 2-by-2 matrices such that p + q/2 = n — the dimension of the tridiagonal. Although a general tridiagonal matrix is not necessarily symmetric or Hermitian, many of those that arise when ...