enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure (quadrature or squaring), as in the quadrature of the circle. The term is also sometimes used to describe the numerical solution of differential equations.

  3. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The graphs of antiderivatives of a given function are vertical translations of each other, with each graph's vertical location depending upon the value c. More generally, the power function has antiderivative if n ≠ −1, and if n = −1. In physics, the integration of acceleration yields velocity plus a constant.

  4. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    Then, the residue at the point c is calculated as: ⁡ (,) = = = = using the results from contour integral of a monomial for counter clockwise contour integral around a point c. Hence, if a Laurent series representation of a function exists around c, then its residue around c is known by the coefficient of the ( z − c ) − 1 {\displaystyle ...

  5. Antiderivative (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Antiderivative_(complex...

    In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex -valued function g is a function whose complex derivative is g. More precisely, given an open set in the complex plane and a function the antiderivative of is a function that satisfies . As such, this concept is the complex-variable version of the ...

  6. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f−1 (x) when the integral of the function f (x) is known. Indeed, the functions x (y) and y (x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.

  7. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    Calculus. In calculus, the power rule is used to differentiate functions of the form , whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's ...

  8. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    The trigonometric functions, logarithm, and the power functions are analytic on any open set of their domain. Most special functions (at least in some range of the complex plane): hypergeometric functions. Bessel functions. gamma functions. Typical examples of functions that are not analytic are.

  9. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A (from V to itself) that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite ...