enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    In mathematics, the inverse trigonometric functions (occasionally also called antitrigonometric, [1] cyclometric, [2] or arcus functions [3]) are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, [4 ...

  3. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.

  4. List of integrals of inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    e. The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse trigonometric functions. For a complete list of integral formulas, see lists of integrals. The inverse trigonometric functions are also known as the "arc functions". C is used for the arbitrary constant of integration that can only be ...

  5. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    Inverse hyperbolic functions. The hyperbolic functions sinh, cosh, and tanh with respect to a unit hyperbola are analogous to circular functions sin, cos, tan with respect to a unit circle. The argument to the hyperbolic functions is a hyperbolic angle measure. In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic ...

  6. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.

  7. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Trigonometric integral. Plot of the hyperbolic sine integral function Shi (z) in the complex plane from −2 − 2i to 2 + 2i. Si (x) (blue) and Ci (x) (green) shown on the same plot. Integral sine in the complex plane, plotted with a variant of domain coloring. Integral cosine in the complex plane.

  8. Integral of inverse functions - Wikipedia

    en.wikipedia.org/wiki/Integral_of_inverse_functions

    Miscellanea. v. t. e. In mathematics, integrals of inverse functions can be computed by means of a formula that expresses the antiderivatives of the inverse of a continuous and invertible function , in terms of and an antiderivative of . This formula was published in 1905 by Charles-Ange Laisant. [1]

  9. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    Calculus. In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and can loosely be thought of as using the chain rule "backwards."