enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose —that is, the element in the i -th row and j -th column is equal to the complex conjugate of the element in the j -th row and i -th column, for all indices i and j: is Hermitian {\displaystyle A {\text { is ...

  3. Hermitian manifold - Wikipedia

    en.wikipedia.org/wiki/Hermitian_manifold

    Hermitian manifold. In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a ...

  4. Hermitian symmetric space - Wikipedia

    en.wikipedia.org/wiki/Hermitian_symmetric_space

    t. e. In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

  5. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M, the upper left ...

  6. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space[1][2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive ...

  7. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    The Pauli matrices are a vector of three 2×2 matrices that are used as spin operators. Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented ...

  8. Fubini–Study metric - Wikipedia

    en.wikipedia.org/wiki/Fubini–Study_metric

    In mathematics, the Fubini–Study metric (IPA: /fubini-ʃtuːdi/) is a Kähler metric on a complex projective space CP n endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study. [1] [2] A Hermitian form in (the vector space) C n+1 defines a unitary subgroup U(n+1) in GL(n+1,C).

  9. Hermitian connection - Wikipedia

    en.wikipedia.org/wiki/Hermitian_connection

    In mathematics, a Hermitian connection is a connection on a Hermitian vector bundle over a smooth manifold which is compatible with the Hermitian metric on , meaning that. for all smooth vector fields and all smooth sections of . If is a complex manifold, and the Hermitian vector bundle on is equipped with a holomorphic structure, then there is ...