enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    This includes pressure inlet and outlet conditions mainly. Typical examples that utilize this boundary condition include buoyancy driven flows, internal flows with multiple outlets, free surface flows and external flows around objects. [1] An example is flow outlet into atmosphere where pressure is atmospheric.

  3. Boundary conditions in computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Boundary conditions in computational fluid dynamics. Almost every computational fluid dynamics problem is defined under the limits of initial and boundary conditions. When constructing a staggered grid, it is common to implement boundary conditions by adding an extra node across the physical boundary. The nodes just outside the inlet of the ...

  4. Neumann boundary condition - Wikipedia

    en.wikipedia.org/wiki/Neumann_boundary_condition

    In mathematics, the Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl Neumann. [1] When imposed on an ordinary or a partial differential equation, the condition specifies the values of the derivative applied at the boundary of the domain. It is possible to describe the problem using other boundary ...

  5. Flow conditioning - Wikipedia

    en.wikipedia.org/wiki/Flow_conditioning

    A pressure outlet boundary condition is used at exit of the settling chamber where pressure at outlet is set to zero for gauge pressure. It is always possible to predict the entire flow field by meshing whole fluid domain; however simulation for the prediction of entire flow field using symmetry boundary condition.

  6. Boundary value problem - Wikipedia

    en.wikipedia.org/wiki/Boundary_value_problem

    Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).

  7. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Bernoulli's principle. A flow of air through a venturi meter. The kinetic energy increases at the expense of the fluid pressure, as shown by the difference in height of the two columns of water. Video of a venturi meter used in a lab experiment. Part of a series on.

  8. No-slip condition - Wikipedia

    en.wikipedia.org/wiki/No-slip_condition

    The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...

  9. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    This incompressible flow satisfies the Euler equations. In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.