Ads
related to: distance in a directed graph worksheet gradeteacherspayteachers.com has been visited by 100K+ users in the past month
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Packets
Search results
Results from the WOW.Com Content Network
A metric space defined over a set of points in terms of distances in a graph defined over the set is called a graph metric. The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected. The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in ...
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
A directed graph is weakly connected (or just connected [9]) if the undirected underlying graph obtained by replacing all directed edges of the graph with undirected edges is a connected graph. A directed graph is strongly connected or strong if it contains a directed path from x to y (and from y to x ) for every pair of vertices ( x , y ) .
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
A vertex in a directed graph whose second neighborhood is at least as large as its first neighborhood is called a Seymour vertex. [5]In the second neighborhood conjecture, the condition that the graph have no two-edge cycles is necessary, for in graphs that have such cycles (for instance the complete oriented graph) all second neighborhoods may be empty or small.
Ads
related to: distance in a directed graph worksheet gradeteacherspayteachers.com has been visited by 100K+ users in the past month