Search results
Results from the WOW.Com Content Network
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. [1] Type I error: an innocent person may be convicted.
The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false ...
In statistical hypothesis testing, there are various notions of so-called type III errors (or errors of the third kind), and sometimes type IV errors or higher, by analogy with the type I and type II errors of Jerzy Neyman and Egon Pearson. Fundamentally, type III errors occur when researchers provide the right answer to the wrong question, i.e ...
Testing a hypothesis suggested by the data can very easily result in false positives (type I errors). If one looks long enough and in enough different places, eventually data can be found to support any hypothesis. Yet, these positive data do not by themselves constitute evidence that the hypothesis is correct. The negative test data that were ...
Neyman–Pearson lemma [5] — Existence:. If a hypothesis test satisfies condition, then it is a uniformly most powerful (UMP) test in the set of level tests.. Uniqueness: If there exists a hypothesis test that satisfies condition, with >, then every UMP test in the set of level tests satisfies condition with the same .
For a Type I error, it is shown as α (alpha) and is known as the size of the test and is 1 minus the specificity of the test. This quantity is sometimes referred to as the confidence of the test, or the level of significance (LOS) of the test. For a Type II error, it is shown as β (beta) and is 1 minus the power or 1 minus the sensitivity of ...
The sequential probability ratio test (SPRT) is a specific sequential hypothesis test, developed by Abraham Wald [1] and later proven to be optimal by Wald and Jacob Wolfowitz. [2] Neyman and Pearson's 1933 result inspired Wald to reformulate it as a sequential analysis problem.