Search results
Results from the WOW.Com Content Network
Most liquids freeze by crystallization, formation of crystalline solid from the uniform liquid. This is a first-order thermodynamic phase transition, which means that as long as solid and liquid coexist, the temperature of the whole system remains very nearly equal to the melting point due to the slow removal of heat when in contact with air, which is a poor heat conductor.
Phase-change cooling is an extremely effective way to cool the processor. A vapor compression phase-change cooler is a unit that usually sits underneath the PC, with a tube leading to the processor. Inside the unit is a compressor of the same type as in an air conditioner. The compressor compresses a gas (or mixture of gases) which comes from ...
When cooled below approximately 870 millikelvins, the mixture undergoes spontaneous phase separation to form a 3 He-rich phase (the concentrated phase) and a 3 He-poor phase (the dilute phase). As shown in the phase diagram, at very low temperatures the concentrated phase is essentially pure 3 He, while the dilute phase contains about 6.6% 3 He ...
Supercooling is the cooling of a liquid below its freezing point without it becoming solid. Freezing point depression is when a solution can be cooled below the freezing point of the corresponding pure liquid due to the presence of the solute ; an example of this is the freezing point depression that occurs when salt is added to pure water.
A condenser is designed to transfer heat from a working fluid (e.g. water in a steam power plant) to a secondary fluid or the surrounding air. The condenser relies on the efficient heat transfer that occurs during phase changes, in this case during the condensation of a vapor into a liquid. The vapor typically enters the condenser at a ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Superfluid: A phase achieved by a few cryogenic liquids at extreme temperature at which they become able to flow without friction. A superfluid can flow up the side of an open container and down the outside. Placing a superfluid in a spinning container will result in quantized vortices.
The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.