enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photopigment - Wikipedia

    en.wikipedia.org/wiki/Photopigment

    The pigments in photoreceptor proteins either change their conformation or undergo photoreduction when they absorb a photon. [3] This change in the conformation or redox state of the chromophore then affects the protein conformation or activity and triggers a signal transduction cascade. [3] Examples of photoreceptor pigments include: [4]

  3. Photosynthetic pigment - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_pigment

    Each pigment absorbs light more efficiently in a different part of the electromagnetic spectrum. Chlorophyll a absorbs well in the ranges of 400–450 nm and at 650–700 nm; chlorophyll b at 450–500 nm and at 600–650 nm. Xanthophyll absorbs well at 400–530 nm.

  4. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    Due to the presence of chlorophyll a, as opposed to bacteriochlorophyll, Photosystem II absorbs light at a shorter wavelength. The pair of chlorophyll molecules at the reaction center are often referred to as P680. [1] When the photon has been absorbed, the resulting high-energy electron is transferred to a nearby pheophytin molecule.

  5. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    In PSII, it absorbs photons with a wavelength of 680 nm, and is therefore called P680. In PSI, it absorbs photons at 700 nm and is called P700. In bacteria, the special pair is called P760, P840, P870, or P960. "P" here means pigment, and the number following it is the wavelength of light absorbed.

  6. Thylakoid - Wikipedia

    en.wikipedia.org/wiki/Thylakoid

    Photosystem I contains a pair of chlorophyll a molecules, designated P700, at its reaction center that maximally absorbs 700 nm light. Photosystem II contains P680 chlorophyll that absorbs 680 nm light best (note that these wavelengths correspond to deep red – see the visible spectrum). The P is short for pigment and the number is the ...

  7. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    Each photosystem has two parts: a reaction center, where the photochemistry occurs, and an antenna complex, which surrounds the reaction center. The antenna complex contains hundreds of chlorophyll molecules which funnel the excitation energy to the center of the photosystem. At the reaction center, the energy will be trapped and transferred to ...

  8. Photodissociation - Wikipedia

    en.wikipedia.org/wiki/Photodissociation

    Each absorbed photon causes the formation of an exciton (an electron excited to a higher energy state) in the pigment molecule. The energy of the exciton is transferred to a chlorophyll molecule ( P680 , where P stands for pigment and 680 for its absorption maximum at 680 nm) in the reaction center of photosystem II via resonance energy transfer .

  9. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene, two pheophytin, two plastoquinone, two heme, one bicarbonate, 20 lipids, the Mn 4 CaO 5 cluster (including two chloride ions), one non heme Fe 2+ and two putative Ca 2+ ions per monomer. [4] There are several crystal structures of photosystem II. [5]