enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    For backpropagation, the activation as well as the derivatives () ′ (evaluated at ) must be cached for use during the backwards pass. The derivative of the loss in terms of the inputs is given by the chain rule; note that each term is a total derivative , evaluated at the value of the network (at each node) on the input x {\displaystyle x} :

  3. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    The method returns a pair of the evaluated function and its derivative. The method traverses the expression tree recursively until a variable is reached. If the derivative with respect to this variable is requested, its derivative is 1, 0 otherwise. Then the partial function as well as the partial derivative are evaluated. [16]

  4. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    To find the right derivative, we again apply the chain rule, this time differentiating with respect to the total input to , : = () Note that the output of the j {\displaystyle j} th neuron, y j {\displaystyle y_{j}} , is just the neuron's activation function g {\displaystyle g} applied to the neuron's input h j {\displaystyle h_{j}} .

  5. Adept (C++ library) - Wikipedia

    en.wikipedia.org/wiki/Adept_(C++_library)

    Adept implements automatic differentiation using an operator overloading approach, in which scalars to be differentiated are written as adouble, indicating an "active" version of the normal double, and vectors to be differentiated are written as aVector.

  6. Xcas - Wikipedia

    en.wikipedia.org/wiki/Xcas

    Xcas can solve equations, calculate derivatives, antiderivatives and more. Figure 3. Xcas can solve differential equations. Xcas is a user interface to Giac, which is an open source [2] computer algebra system (CAS) for Windows, macOS and Linux among many other platforms. Xcas is written in C++. [3] Giac can be used directly inside software ...

  7. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]

  8. Donald Trump will be assuming the office of U.S. president on Jan. 20, 2025, and his return to the role could usher in a wide variety of economic changes.

  9. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    The derivative of with respect to yields the state equation as shown before, and the state variable is =. The derivative of L {\displaystyle {\mathcal {L}}} with respect to u {\displaystyle u} is equivalent to the adjoint equation, which is, for every δ u ∈ R m {\displaystyle \delta _{u}\in \mathbb {R} ^{m}} ,