Search results
Results from the WOW.Com Content Network
Time bounds for integer sorting algorithms typically depend on three parameters: the number n of data values to be sorted, the magnitude K of the largest possible key to be sorted, and the number w of bits that can be represented in a single machine word of the computer on which the algorithm is to be performed.
A standard technique is to use a modulo function on the key, by selecting a divisor M which is a prime number close to the table size, so h(K) ≡ K (mod M). The table size is usually a power of 2. This gives a distribution from {0, M − 1}. This gives good results over a large number of key sets.
In a well-dimensioned hash table, the average time complexity for each lookup is independent of the number of elements stored in the table. Many hash table designs also allow arbitrary insertions and deletions of key–value pairs, at amortized constant average cost per operation. [3] [4] [5] Hashing is an example of a space-time tradeoff.
PER Aligned: a fixed number of bits if the integer type has a finite range and the size of the range is less than 65536; a variable number of octets otherwise; OER: 1, 2, or 4 octets (either signed or unsigned) if the integer type has a finite range that fits in that number of octets; a variable number of octets otherwise
Such a component or property is called a sort key. For example, the items are books, the sort key is the title, subject or author, and the order is alphabetical. A new sort key can be created from two or more sort keys by lexicographical order. The first is then called the primary sort key, the second the secondary sort key, etc.
A tabular data card proposed for Babbage's Analytical Engine showing a key–value pair, in this instance a number and its base-ten logarithm. A key–value database, or key–value store, is a data storage paradigm designed for storing, retrieving, and managing associative arrays, and a data structure more commonly known today as a dictionary or hash table.
The symbol table must have some means of differentiating references to the different "p"s. A common data structure used to implement symbol tables is the hash table. The time for searching in hash tables is independent of the number of elements stored in the table, so it is efficient for a large number of elements.
One-time pads are practical in situations where two parties in a secure environment must be able to depart from one another and communicate from two separate secure environments with perfect secrecy. The one-time-pad can be used in superencryption. [26] The algorithm most commonly associated with quantum key distribution is the one-time pad. [27]