Search results
Results from the WOW.Com Content Network
Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes.
An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...
It follows from the formula that r is the quotient of two polynomials of degree s if the method has s stages. Explicit methods have a strictly lower triangular matrix A, which implies that det(I − zA) = 1 and that the stability function is a polynomial. [32] The numerical solution to the linear test equation decays to zero if | r(z) | < 1 ...
The scheme is always numerically stable and convergent but usually more numerically intensive than the explicit method as it requires solving a system of numerical equations on each time step. The errors are linear over the time step and quadratic over the space step: Δ u = O ( k ) + O ( h 2 ) . {\displaystyle \Delta u=O(k)+O(h^{2}).}
All are implicit methods, have order 2s − 2 and they all have c 1 = 0 and c s = 1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages. Lobatto lived before the classic fourth-order method was popularized by Runge and Kutta.
In numerical analysis and scientific computing, the backward Euler method (or implicit Euler method) is one of the most basic numerical methods for the solution of ordinary differential equations. It is similar to the (standard) Euler method , but differs in that it is an implicit method .
It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler , who first proposed it in his book Institutionum calculi integralis (published 1768–1770).
The purpose of the implicit function theorem is to tell us that functions like g 1 (x) and g 2 (x) almost always exist, even in situations where we cannot write down explicit formulas. It guarantees that g 1 (x) and g 2 (x) are differentiable, and it even works in situations where we do not have a formula for f(x, y).