Search results
Results from the WOW.Com Content Network
Both the logistic map and the sine map are one-dimensional maps that map the interval [0, 1] to [0, 1] and satisfy the following property, called unimodal . = =. The map is differentiable and there exists a unique critical point c in [0, 1] such that ′ =. In general, if a one-dimensional map with one parameter and one variable is unimodal and ...
The degree of a map between general manifolds was first defined by Brouwer, [1] who showed that the degree is homotopy invariant and used it to prove the Brouwer fixed point theorem. Less general forms of the concept existed before Brouwer, such as the winding number and the Kronecker characteristic (or Kronecker integral ).
xy plot where x = x 0 ∈ [0, 1] is rational and y = x n for all n. The dyadic transformation (also known as the dyadic map, bit shift map, 2x mod 1 map, Bernoulli map, doubling map or sawtooth map [1] [2]) is the mapping (i.e., recurrence relation)
The continuous function f is defined on a closed interval [a, b] and takes values in the same interval. Saying that this function has a fixed point amounts to saying that its graph (dark green in the figure on the right) intersects that of the function defined on the same interval [a, b] which maps x to x (light green).
In mathematics, a chaotic map is a map (an evolution function) that exhibits some sort of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time parameter. Discrete maps usually take the form of iterated functions. Chaotic maps often occur in the study of dynamical systems.
The total degree is the sum of the degrees of all vertices; by the handshaking lemma it is an even number. The degree sequence is the collection of degrees of all vertices, in sorted order from largest to smallest. In a directed graph, one may distinguish the in-degree (number of incoming edges) and out-degree (number of outgoing edges). [2] 2.
Given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair of continuous maps f : X → Y and g : Y → X, such that g ∘ f is homotopic to the identity map id X and f ∘ g is homotopic to id Y. If such a pair exists, then X and Y are said to be homotopy equivalent, or of the same homotopy type.
An RR tachograph is a graph of the numerical value of the RR-interval versus time. In the context of RR tachography, a Poincaré plot is a graph of RR(n) on the x-axis versus RR(n + 1) (the succeeding RR interval) on the y-axis, i.e. one takes a sequence of intervals and plots each interval against the following interval. [3]