Ads
related to: glb supersonic shock 5lbs oil pan
Search results
Results from the WOW.Com Content Network
The Lockheed Martin X-59 Quesst ("Quiet SuperSonic Technology"), sometimes styled QueSST, is an American experimental supersonic aircraft under development by Skunk Works for NASA's Low-Boom Flight Demonstrator project. [2] Preliminary design started in February 2016, with the X-59 planned to begin flight testing in 2021.
An oblique shock at the nose of a T-38 aircraft is made visible through Schlieren photography. An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the direction of incoming air. It occurs when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. [1]
In this case, the gas ahead of the shock is stationary (in the laboratory frame) and the gas behind the shock can be supersonic in the laboratory frame. The shock propagates with a wavefront which is normal (at right angles) to the direction of flow. The speed of the shock is a function of the original pressure ratio between the two bodies of gas.
Normal shock waves lie perpendicular to the direction of the flow. Normal shock waves tend to cause a large drop in stagnation pressure. The higher the supersonic entry Mach number to a normal shock wave, the lower the subsonic exit Mach number and the stronger the shock (i.e. the greater the loss in stagnation pressure across the shock wave).
An inlet cone, as part of an Oswatitsch-type inlet used on a supersonic aircraft or missile, is the 3D-surface on which supersonic ram compression for a gas turbine engine or ramjet combustor takes place through oblique shock waves. Slowing the air to low supersonic speeds using a cone minimizes loss in total pressure (increases pressure recovery).
Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. [1] The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.
Supersonic airfoils generally have a thin section formed of either angled planes or opposed arcs (called "double wedge airfoils" and "biconvex airfoils" respectively), with very sharp leading and trailing edges. The sharp edges prevent the formation of a detached bow shock in front of the airfoil as it moves through the air. [1]
On supersonic jets, the high kinetic energy in the approaching air has to be transformed into static pressure while losing a minimum amount of energy. To do this the inlets are more complicated than subsonic ones as they have to set up two or three shock waves to compress the air. A cone or inclined ramp protrudes ahead of the inlet.
Ads
related to: glb supersonic shock 5lbs oil pan