enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A matrix whose entries are either +1, 0, or −1. Signature matrix: A diagonal matrix where the diagonal elements are either +1 or −1. Single-entry matrix: A matrix where a single element is one and the rest of the elements are zero. Skew-Hermitian matrix: A square matrix which is equal to the negative of its conjugate transpose, A * = −A.

  3. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.

  4. Main diagonal - Wikipedia

    en.wikipedia.org/wiki/Main_diagonal

    In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix is the list of entries , where =. All off-diagonal elements are zero in a diagonal matrix. The following four matrices have their main diagonals indicated by red ones:

  5. Hollow matrix - Wikipedia

    en.wikipedia.org/wiki/Hollow_matrix

    A hollow matrix may be a square matrix whose diagonal elements are all equal to zero. [3] That is, an n × n matrix A = (a ij) is hollow if a ij = 0 whenever i = j (i.e. a ii = 0 for all i). The most obvious example is the real skew-symmetric matrix. Other examples are the adjacency matrix of a finite simple graph, and a distance matrix or ...

  6. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.

  7. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    An atomic (lower or upper) triangular matrix is a special form of unitriangular matrix, where all of the off-diagonal elements are zero, except for the entries in a single column. Such a matrix is also called a Frobenius matrix , a Gauss matrix , or a Gauss transformation matrix .

  8. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the i th position, where it is m .

  9. Jordan matrix - Wikipedia

    en.wikipedia.org/wiki/Jordan_matrix

    More generally, given a Jordan matrix =,,,, that is, whose k th diagonal block, , is the Jordan block J λ k,m k and whose diagonal elements may not all be distinct, the geometric multiplicity of for the matrix J, indicated as ⁡, corresponds to the number of Jordan blocks whose eigenvalue is λ.