Search results
Results from the WOW.Com Content Network
The essential service water system (ESWS) circulates the water that cools the plant's heat exchangers and other components before dissipating the heat into the environment. Because this includes cooling the systems that remove decay heat from both the primary system and the spent fuel rod cooling ponds, the ESWS is a safety-critical system. [7]
The S-PRISM represents GEH's Generation IV reactor solution to closing the nuclear fuel cycle and is also part of its Advanced Recycling Center (ARC) proposition [1] to U.S. Congress to deal with nuclear waste. [2] S-PRISM is a commercial implementation of the Integral Fast Reactor developed by Argonne National Laboratory between 1984 and 1994.
The proposed project would require a 1 million-square-foot nuclear fuel cycle facility to be built. The land would be acquired in three phases over six years at a total cost of nearly $27 million ...
The Reactor Protection System (RPS) is a system, computerized in later BWR models, that is designed to automatically, rapidly, and completely shut down and make safe the Nuclear Steam Supply System (NSSS – the reactor pressure vessel, pumps, and water/steam piping within the containment) if some event occurs that could result in the reactor entering an unsafe operating condition.
The passive nuclear safety systems in an ESBWR operate without using any pumps, which creates increased design safety, integrity, and reliability, while simultaneously reducing overall reactor cost. It also uses natural circulation to drive coolant flow within the reactor pressure vessel (RPV); this results in fewer systems to maintain, and ...
Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency (usually overheating resulting from a loss of coolant or loss of coolant flow).
According to the patent application [5] the reactor design has some notable characteristics, that sets it apart from other reactor designs. It uses uranium hydride (UH 3) "low-enriched" to 5% uranium-235—the remainder is uranium-238—as the nuclear fuel, rather than the usual metallic uranium or uranium dioxide that composes the fuel rods of contemporary light-water reactors.
(a) The Secretary, in cooperation with the Nuclear Regulatory Commission, shall initiate a study as to the sufficiency of efforts in the United States to provide specially trained professionals to operate the controls of nuclear power plants and other facilities in the back-end of the nuclear fuel cycle. In carrying out the study, the Secretary ...