Search results
Results from the WOW.Com Content Network
The germinal matrix is the site of proliferating neuronal and glial precursors in the developing brain, which is located above the caudate nucleus, in the floor of the lateral ventricle, and caudothalamic groove. The germinal matrix contains a rich network of fragile thin-walled blood vessels.
It is a fragile portion of the brain that may be damaged leading to a germinal matrix hemorrhage (grade 1 intraventricular hemorrhage). Location/anatomy: The germinal matrix is next to the lateral ventricles (the "inside" of the brain). Function/physiology: Neurons and glia migrate radially outward from the germinal matrix towards the cerebral ...
The lack of blood flow results in cell death and subsequent breakdown of the blood vessel walls, leading to bleeding. While this bleeding can result in further injury, it is itself a marker for injury that has already occurred. Most intraventricular hemorrhages occur in the first 72 hours after birth. [9]
Intracerebral hemorrhage (ICH), also known as hemorrhagic stroke, is a sudden bleeding into the tissues of the brain (i.e. the parenchyma), into its ventricles, or into both. [3] [4] [1] An ICH is a type of bleeding within the skull and one kind of stroke (ischemic stroke being the other).
Instead the blood goes through a collection of small vessels from arteries to veins. These collection of abnormal small vessels is termed as "nidus". This condition happens in 0.1% of the population has a risk of 2 to 4% per year for intracranial bleeding. Once ruptured, it results in intraparenchymal hemorrhage, intraventricular hemorrhage and ...
Intraparenchymal hemorrhage accounts for approximately 8-13% of all strokes and results from a wide spectrum of disorders. It is more likely to result in death or major disability than ischemic stroke or subarachnoid hemorrhage , and therefore constitutes an immediate medical emergency .
The hematoma can exert a mass effect on the brain, increasing intracranial pressure and potentially causing midline shift or deadly brain herniation. In the past this effect held additional diagnostic importance since prior to the invention of modern tomographic soft-tissue imaging utilizing MRI or CT it was not possible to directly image many ...
Head imaging, using either CT or MRI, can be useful for differentiating subgaleal hemorrhage from other sources of cranial bleeding. Head ultrasound is useful for the diagnosis of SGH in the hands of an operator experienced in imaging the neonatal head and scalp, and is preferable to CT due to lack of ionizing radiation.