Search results
Results from the WOW.Com Content Network
When ΔS > 0 and ΔH < 0, the process is always spontaneous as written. When ΔS < 0 and ΔH > 0, the process is never spontaneous, but the reverse process is always spontaneous. When ΔS > 0 and ΔH > 0, the process will be spontaneous at high temperatures and non-spontaneous at low temperatures. When ΔS < 0 and ΔH < 0, the process will be ...
For a process at constant temperature and pressure without non-PV work, this inequality transforms into <. Similarly, for a process at constant temperature and volume, <. Thus, a negative value of the change in free energy is a necessary condition for a process to be spontaneous; this is the most useful form of the second law of thermodynamics ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
or dG < 0. For a similar process at constant temperature and volume, the change in Helmholtz free energy must be negative, <. Thus, a negative value of the change in free energy (G or A) is a necessary condition for a process to be spontaneous. This is the most useful form of the second law of thermodynamics in chemistry, where free-energy ...
Many systems, such as crystal lattices, have a unique ground state, and (since ln(1) = 0) this means that they have zero entropy at absolute zero. Other systems have more than one state with the same, lowest energy, and have a non-vanishing "zero-point entropy".
and thus for a system kept at constant temperature and volume and not capable of performing electrical or other non-PV work, the total free energy during a spontaneous change can only decrease. This result seems to contradict the equation dF = −S dT − P dV, as keeping T and V constant seems to imply dF = 0, and hence F = constant.
Download as PDF; Printable version; ... This can be either 0, 1, or 2. We can call these "macrostates". ... Spontaneous thermodynamic processes are irreversible, in ...
If we calculate the entropy S 1 before and S 2 after such an internal process the Second Law of Thermodynamics demands that S 2 ≥ S 1 where the equality sign holds if the process is reversible. The difference S i = S 2 − S 1 is the entropy production due to the irreversible process. The Second law demands that the entropy of an isolated ...