enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Triphenylphosphine oxide - Wikipedia

    en.wikipedia.org/wiki/Triphenylphosphine_oxide

    It is poorly soluble in hexane and cold diethyl ether. Trituration or chromatography of crude products with these solvents often leads to a good separation of triphenylphosphine oxide. Its removal is facilitated by conversion to its Mg(II) complex, which is poorly soluble in toluene or dichloromethane and can be filtered off. [7]

  3. Triphenylphosphine - Wikipedia

    en.wikipedia.org/wiki/Triphenylphosphine

    Triphenylphosphine undergoes slow oxidation by air to give triphenylphosphine oxide, Ph 3 PO: 2 PPh 3 + O 2 → 2 OPPh 3. This impurity can be removed by recrystallisation of PPh 3 from either hot ethanol or isopropanol. [8] This method capitalizes on the fact that OPPh 3 is more polar and hence more soluble in polar solvents than PPh 3.

  4. Tris(o-tolyl)phosphine - Wikipedia

    en.wikipedia.org/wiki/Tris(o-tolyl)phosphine

    It is a white, water-insoluble solid that is soluble in organic solvents. In solution it slowly converts to the phosphine oxide. As a phosphine ligand, it has a wide cone angle of 194°. Consequently, it tends to cyclometalate when treated with metal halides and metal acetates. Complexes of this ligand are common in homogeneous catalysis. [1]

  5. Transition metal complexes of phosphine oxides - Wikipedia

    en.wikipedia.org/wiki/Transition_metal_complexes...

    The structure of the phosphine oxide is not strongly perturbed by coordination. The geometry at phosphorus remains tetrahedral. The P-O distance elongates by ca. 2%. In triphenylphosphine oxide, the P-O distance is 1.48 Å. [3] In NiCl 2 [OP(C 6 H 5) 3] 2, the distance is 1.51 Å (see figure).

  6. Phosphine oxides - Wikipedia

    en.wikipedia.org/wiki/Phosphine_oxides

    The hydrolysis of phosphorus(V) dihalides also affords the oxide: [9] R 3 PCl 2 + H 2 O → R 3 PO + 2 HCl. A special nonoxidative route is applicable secondary phosphine oxides, which arise by the hydrolysis of the chlorophosphine. An example is the hydrolysis of chlorodiphenylphosphine to give diphenylphosphine oxide: Ph 2 PCl + H 2 O → Ph ...

  7. Solubility chart - Wikipedia

    en.wikipedia.org/wiki/Solubility_chart

    The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.

  8. Mitsunobu reaction - Wikipedia

    en.wikipedia.org/wiki/Mitsunobu_reaction

    The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.

  9. Organophosphorus chemistry - Wikipedia

    en.wikipedia.org/wiki/Organophosphorus_chemistry

    Phosphine oxides (designation σ 4 λ 5) have the general structure R 3 P=O with formal oxidation state V. Phosphine oxides form hydrogen bonds and some are therefore soluble in water. The P=O bond is very polar with a dipole moment of 4.51 D for triphenylphosphine oxide.