Search results
Results from the WOW.Com Content Network
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).
Fuss' theorem gives a relation between the inradius r, the circumradius R and the distance x between the incenter I and the circumcenter O, for any bicentric quadrilateral. The relation is [1] [11] [22] + (+) =, or equivalently
Denoting the distance from the incenter to the Euler line as d, the length of the longest median as v, the length of the longest side as u, the circumradius as R, the length of the Euler line segment from the orthocenter to the circumcenter as e, and the semiperimeter as s, the following inequalities hold: [18]
The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon , or in the special case n = 4 , a cyclic quadrilateral .
A tangential polygon has each of its sides tangent to a particular circle, called the incircle or inscribed circle. The centre of the incircle, called the incentre, can be considered a centre of the polygon. A cyclic polygon has each of its vertices on a particular circle, called the circumcircle or circumscribed circle. The centre of the ...
The radius of the inscribed circle is the apothem (the shortest distance from the center to the boundary of the regular polygon). For any regular polygon, the relations between the common edge length a, the radius r of the incircle, and the radius R of the circumcircle are:
which is also the distance between the circumcenter and incenter. [2] Aside from the orthocenter the Fuhrmann circle intersects each altitude of the triangle in one additional point. Those points all have the distance from their associated vertices of the triangle.
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter.