Search results
Results from the WOW.Com Content Network
Date/Time Thumbnail Dimensions User Comment; current: 00:15, 9 February 2009: 700 × 700 (188 KB): Inductiveload {{Information |Description={{en|1=A chart for the conversion between degrees and radians, along with the signs of the major trigonometric functions in each quadrant.}} |Source=Own work by uploader |Author=Inductiveload |Date=2009/02
provided the angle is measured in radians. Angles measured in degrees must first be converted to radians by multiplying them by / . These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science.
English: A chart showing the relationships between pi, tau, and radians with a circle. Shows the conversion between degrees and radians, along with the signs of the major trigonometric functions in each quadrant.
The binary degree, also known as the binary radian (or brad), is 1 / 256 turn. [21] The binary degree is used in computing so that an angle can be represented to the maximum possible precision in a single byte. Other measures of angle used in computing may be based on dividing one whole turn into 2 n equal parts for other values of n. [22]
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [4] It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI brochure as an accepted unit. [5]
[18] [19] Today, the degree, 1 / 360 of a turn, or the mathematically more convenient radian, 1 / 2 π of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions . [ 23 ]