Search results
Results from the WOW.Com Content Network
Phenylboronic acid participates in numerous cross coupling reactions where it serves as a source of a phenyl group. One example is the Suzuki reaction where, in the presence of a Pd(0) catalyst and base, phenylboronic acid and vinyl halides are coupled to produce phenyl alkenes . [ 7 ]
Hydrogen peroxide (H 2 O 2) can be used as HOCl scavenger whose byproducts do not interfere in the Pinnick oxidation reaction: HOCl + H 2 O 2 → HCl + O 2 + H 2 O In a weakly acidic condition, fairly concentrated (35%) H 2 O 2 solution undergoes a rapid oxidative reaction with no competitive reduction reaction of HClO 2 to form HOCl.
Protodeboronation is a chemical reaction involving the protonolysis of a boronic acid (or other organoborane compound) in which a carbon-boron bond is broken and replaced with a carbon-hydrogen bond. Protodeboronation is a well-known undesired side reaction , and frequently associated with metal-catalysed coupling reactions that utilise boronic ...
Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). [1] For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and ...
The Barton–McCombie deoxygenation is an organic reaction in which a hydroxy functional group in an organic compound is replaced by a hydrogen to give an alkyl group. [1] [2] It is named after British chemists Sir Derek Harold Richard Barton and Stuart W. McCombie. The Barton-McCombie deoxygenation. This deoxygenation reaction is a radical ...
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H 2 O 2 is reduced.
The hydrogen is dangerous and could ignite with the oxygen in the air, so the chemical procedure should be done in an inert atmosphere (e.g., nitrogen). Deprotonation can be an important step in a chemical reaction. Acid–base reactions typically occur faster than any other step which may determine the product of a reaction. The conjugate base ...
The Guerbet reaction, reported in 1899, [5] is an early example of a hydrogen auto-transfer process. The Guerbet reaction converts primary alcohols to β-alkylated dimers via alcohol dehydrogenation followed by aldol condensation and reduction of the resulting enones.