Search results
Results from the WOW.Com Content Network
It is a ratio in the order of about 10 80 to 10 90, or at most one ten-billionth of a googol (0.00000001% of a googol). Carl Sagan pointed out that the total number of elementary particles in the universe is around 10 80 (the Eddington number ) and that if the whole universe were packed with neutrons so that there would be no empty space ...
Since the binary numeral 100 represents the value four, it would be confusing to refer to the numeral as one hundred (a word that represents a completely different value, or amount). Alternatively, the binary numeral 100 can be read out as "four" (the correct value), but this does not make its binary nature explicit.
This is a list of some binary codes that are (or have been) used to represent text as a sequence of binary digits "0" and "1". Fixed-width binary codes use a set number of bits to represent each character in the text, while in variable-width binary codes, the number of bits may vary from character to character.
The modern binary number system, the basis for binary code, is an invention by Gottfried Leibniz in 1689 and appears in his article Explication de l'Arithmétique Binaire (English: Explanation of the Binary Arithmetic) which uses only the characters 1 and 0, and some remarks on its usefulness. Leibniz's system uses 0 and 1, like the modern ...
When converting from binary to octal every 3 bits relate to one and only one octal digit. Hexadecimal, decimal, octal, and a wide variety of other bases have been used for binary-to-text encoding , implementations of arbitrary-precision arithmetic , and other applications.
67,110,932 = number of 32-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed [15] 67,137,425 = Leyland number using 4 & 13 (4 13 + 13 4) 68,041,019 = number of parallelogram polyominoes with 23 cells. [36] 68,574,961 = 8281 2 = 91 4; 69,273,666 = number of primitive polynomials of degree ...
A diagram showing how manipulating the least significant bits of a color can have a very subtle and generally unnoticeable effect on the color. In this diagram, green is represented by its RGB value, both in decimal and in binary. The red box surrounding the last two bits illustrates the least significant bits changed in the binary representation.
One motivation for such a pursuit is that attributed to the inventor of the word googol, who was certain that any finite number "had to have a name". Another possible motivation is competition between students in computer programming courses, where a common exercise is that of writing a program to output numbers in the form of English words.