Search results
Results from the WOW.Com Content Network
Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle.
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
The final part of the book concerns a conjecture of William Thurston, proved by Burton Rodin and Dennis Sullivan, that makes this analogy concrete: conformal mappings from any topological disk to a circle can be approximated by filling the disk by a hexagonal packing of unit circles, finding a circle packing that adds to that pattern of ...
A circle packing for a five-vertex planar graph. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are ...
The new proofs involve using the Laplace transform of a carefully chosen modular function to construct a radially symmetric function f such that f and its Fourier transform f̂ both equal 1 at the origin, and both vanish at all other points of the optimal lattice, with f negative outside the central sphere of the packing and f̂ positive.
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]
The filled circle indicates that the value of the right sub-function is used in this position. For a piecewise-defined function to be differentiable on a given interval in its domain, the following conditions have to fulfilled in addition to those for continuity above: its sub-functions are differentiable on the corresponding open intervals,