Search results
Results from the WOW.Com Content Network
An Adler-32 checksum is obtained by calculating two 16-bit checksums A and B and concatenating their bits into a 32-bit integer. A is the sum of all bytes in the stream plus one, and B is the sum of the individual values of A from each step. At the beginning of an Adler-32 run, A is initialized to 1, B to 0. The sums are done modulo 65521 (the ...
This means you need to know when a 'one' bit starts to distinguish it from idle. This is done by agreeing in advance how fast data will be transmitted over a link, then using a start bit to signal the start of a byte — this start bit will be a 'zero' bit. Stop bits are 'one' bits i.e. negative voltage.
For each byte of the input stream Perform 16-bit bitwise right rotation by 1 bit on the checksum; Add the byte to the checksum, and apply modulo 2 ^ 16 to the result, thereby keeping it within 16 bits; The result is a 16-bit checksum; The above algorithm appeared in Seventh Edition Unix. The System V sum, -s in GNU sum and -o2 in FreeBSD cksum:
A message that is m bits long can be viewed as a corner of the m-dimensional hypercube. The effect of a checksum algorithm that yields an n-bit checksum is to map each m-bit message to a corner of a larger hypercube, with dimension m + n. The 2 m + n corners of this hypercube represent all possible received messages.
Byte order: With multi-byte CRCs, there can be confusion over whether the byte transmitted first (or stored in the lowest-addressed byte of memory) is the least-significant byte (LSB) or the most-significant byte (MSB). For example, some 16-bit CRC schemes swap the bytes of the check value.
The “fixed-length” password is split into two 7-byte halves. These values are used to create two DES keys, one from each 7-byte half, by converting the seven bytes into a bit stream with the most significant bit first, and inserting a parity bit after every seven bits (so 1010100 becomes 10101000). This generates the 64 bits needed for a ...
literal_bit_mode is an array of 8 values in the 0–2 range, one for each bit position in a byte, which are 1 or 2 if the previous packet was a *MATCH and it is either the most significant bit position or all the more significant bits in the literal to encode/decode are equal to the bits in the corresponding positions in match_byte, while ...
A bytestream is a sequence of bytes. Typically, each byte is an 8-bit quantity, and so the term octet stream is sometimes used interchangeably. An octet may be encoded as a sequence of 8 bits in multiple different ways (see bit numbering) so there is no unique and direct translation between bytestreams and bitstreams.