Search results
Results from the WOW.Com Content Network
The term is used almost exclusively to describe solutions and implies catalysis by organometallic compounds. Homogeneous catalysis is an established technology that continues to evolve. An illustrative major application is the production of acetic acid. Enzymes are examples of homogeneous catalysts. [2]
This mechanism is today considered the actual mechanism taking place in olefin metathesis. Chauvin's experimental evidence was based on the reaction of cyclopentene and 2-pentene with the homogeneous catalyst tungsten(VI) oxytetrachloride and tetrabutyltin: The three principal products C9, C10 and C11 are found in a 1:2:1 regardless of conversion.
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.
One of the first applications of phosphine ligands in catalysis was the use of triphenylphosphine in "Reppe" chemistry (1948), which included reactions of alkynes, carbon monoxide, and alcohols. [16] In his studies, Reppe discovered that this reaction more efficiently produced acrylic esters using NiBr 2 (PPh 3) 2 as a catalyst instead of NiBr 2.
Like most commercial alkene metathesis processes, this reaction does not employ a well-defined molecular catalyst. Heterogeneous catalysis consists of catalysts and substrates in different physical states. The catalyst is typically in solid phase. [6] The mechanism of heterogeneous ring-opening metathesis polymerization is still under ...
Typical catalysts are platinum, and redox-active oxides of iron, vanadium, and molybdenum. In many cases, catalysts are modified with a host of additives or promoters that enhance rates or selectivities. Important homogeneous catalysts for the oxidation of organic compounds are carboxylates of cobalt, iron, and manganese
Ziegler–Natta catalysts of the third class, non-metallocene catalysts, use a variety of complexes of various metals, ranging from scandium to lanthanoid and actinoid metals, and a large variety of ligands containing oxygen (O 2), nitrogen (N 2), phosphorus (P), and sulfur (S). The complexes are activated using MAO, as is done for metallocene ...
Kartstedt's catalyst is often used in hydrosilylation. Before introduction of platinum catalysts by Speier, hydrosilylation was not practiced widely. A peroxide-catalyzed process was reported in academic literature in 1947, [9] but the introduction of Speier's catalyst (H 2 PtCl 6) was a big breakthrough. Karstedt's catalyst was later