Search results
Results from the WOW.Com Content Network
Some chemistry textbooks [3] as well as the widely used CRC Handbook of Chemistry and Physics [4] define lattice energy with the opposite sign, i.e. as the energy required to convert the crystal into infinitely separated gaseous ions in vacuum, an endothermic process. Following this convention, the lattice energy of NaCl would be +786 kJ/mol.
The polarized form of the water molecule, H + OH −, is also called hydron hydroxide by IUPAC nomenclature. [106] Water substance is a rare term used for H 2 O when one does not wish to specify the phase of matter (liquid water, water vapor, some form of ice, or a component in a mixture) though the term "water" is also used with this general ...
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound.It is a refinement of the Born–Landé equation by using an improved repulsion term.
The fluid ounce is distinct from the (international avoirdupois) ounce as a unit of weight or mass, although it is sometimes referred to simply as an "ounce" where context makes the meaning clear (e.g., "ounces in a bottle"). A volume of pure water measuring one imperial fluid ounce has a mass of almost exactly one ounce.
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
AOL latest headlines, entertainment, sports, articles for business, health and world news.
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...