Search results
Results from the WOW.Com Content Network
For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.
Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.
Let C be a category with finite products and a terminal object 1. A list object over an object A of C is: an object L A, a morphism o A : 1 → L A, and; a morphism s A : A × L A → L A; such that for any object B of C with maps b : 1 → B and t : A × B → B, there exists a unique f : L A → B such that the following diagram commutes:
If A is an object of C, then the functor from C to Set that sends X to Hom C (X,A) (the set of morphisms in C from X to A) is an example of such a functor. If C is a small category (i.e. the collection of its objects forms a set), then the contravariant functors from C to Set, together with natural transformations as morphisms, form a new ...
Examples of limits and colimits in Ring include: The ring of integers Z is an initial object in Ring. The zero ring is a terminal object in Ring. The product in Ring is given by the direct product of rings. This is just the cartesian product of the underlying sets with addition and multiplication defined component-wise.
Any two objects X and Y of C have a product X ×Y in C. Any two objects Y and Z of C have an exponential Z Y in C. The first two conditions can be combined to the single requirement that any finite (possibly empty) family of objects of C admit a product in C, because of the natural associativity of the categorical product and because the empty ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If F : C → D is an equivalence, then the following statements are all true: the object c of C is an initial object (or terminal object, or zero object), if and only if Fc is an initial object (or terminal object, or zero object) of D