Search results
Results from the WOW.Com Content Network
The Smith predictor (invented by O. J. M. Smith in 1957) is a type of predictive controller designed to control systems with a significant feedback time delay. The idea can be illustrated as follows. Suppose the plant consists of () followed by a pure time delay .
First-order hold (FOH) is a mathematical model of the practical reconstruction of sampled signals that could be done by a conventional digital-to-analog converter (DAC) and an analog circuit called an integrator. For FOH, the signal is reconstructed as a piecewise linear approximation to the original signal that was sampled.
The bilinear transform is a first-order approximation of the natural logarithm function that is an exact mapping of the z-plane to the s-plane. When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z ...
The bilinear transform is a first-order Padé approximant of the natural logarithm function that is an exact mapping of the z-plane to the s-plane.When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z transform of the discrete-time sequence with the ...
N th-order CIC filters have N times as many poles and zeros in the same locations as the 1 st-order. Thus, the 1 st-order CIC's frequency response is a crude low-pass filter. Typically the gain is normalized by dividing by () so DC has the peak of unity gain. The main lobes drop off as it reaches the next zero, and is followed by a series of ...
The transfer function for a first-order process with dead time is = + (), where k p is the process gain, τ p is the time constant, θ is the dead time, and u(s) is a step change input. Converting this transfer function to the time domain results in
At first glance, this technique can be viewed as subtractive synthesis based on a feedback loop similar to that of a comb filter for z-transform analysis. However, it can also be viewed as the simplest class of wavetable-modification algorithms now known as digital waveguide synthesis, because the delay line acts to store one period of the signal.
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.