enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The sieve of Eratosthenes can be expressed in pseudocode, as follows: [8] [9] algorithm Sieve of Eratosthenes is input: an integer n > 1. output: all prime numbers from 2 through n. let A be an array of Boolean values, indexed by integers 2 to n, initially all set to true.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve method - Wikipedia

    en.wikipedia.org/wiki/Sieve_method

    Sieve method, or the method of sieves, can mean: in mathematics and computer science, the sieve of Eratosthenes, a simple method for finding prime numbers in number theory, any of a variety of methods studied in sieve theory; in combinatorics, the set of methods dealt with in sieve theory or more specifically, the inclusion–exclusion principle

  5. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    The principle of the number field sieve (both special and general) can be understood as an improvement to the simpler rational sieve or quadratic sieve. When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2.

  6. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    The techniques of sieve theory can be quite powerful, but they seem to be limited by an obstacle known as the parity problem, which roughly speaking asserts that sieve theory methods have extreme difficulty distinguishing between numbers with an odd number of prime factors and numbers with an even number of prime factors. This parity problem is ...

  7. Sieve of Pritchard - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Pritchard

    Sieve of Pritchard: algorithm steps for primes up to 150. In mathematics, the sieve of Pritchard is an algorithm for finding all prime numbers up to a specified bound. Like the ancient sieve of Eratosthenes, it has a simple conceptual basis in number theory. [1] It is especially suited to quick hand computation for small bounds.

  8. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    In mathematics, the sieve of Sundaram is a variant of the sieve of Eratosthenes, a simple deterministic algorithm for finding all the prime numbers up to a specified integer. It was discovered by Indian student S. P. Sundaram in 1934.

  9. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning ...