enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stellar structure - Wikipedia

    en.wikipedia.org/wiki/Stellar_structure

    For energy transport refer to Radiative transfer.. The different transport mechanisms of high-mass, intermediate-mass and low-mass stars. Different layers of the stars transport heat up and outwards in different ways, primarily convection and radiative transfer, but thermal conduction is important in white dwarfs.

  3. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics ( classical mechanics ) to astronomical objects, such as stars and planets , to produce ephemeris data.

  4. Cosmic ray astronomy - Wikipedia

    en.wikipedia.org/wiki/Cosmic_ray_astronomy

    Cosmic ray astronomy is a branch of observational astronomy where scientists attempt to identify and study the potential sources of extremely high-energy (ranging from 1 MeV to more than 1 EeV) charged particles called cosmic rays coming from outer space.

  5. Spectral energy distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_Energy_Distribution

    The SED of M51 (upper right) obtained by combining data at many different wavelengths, e.g. UV, visible, and infrared (left). A spectral energy distribution (SED) is a plot of energy versus frequency or wavelength of light (not to be confused with a 'spectrum' of flux density vs frequency or wavelength). [1]

  6. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    In higher-mass stars, the dominant energy production process is the CNO cycle, which is a catalytic cycle that uses nuclei of carbon, nitrogen and oxygen as intermediaries and in the end produces a helium nucleus as with the proton–proton chain. [22] During a complete CNO cycle, 25.0 MeV of energy is released.

  7. High-energy astronomy - Wikipedia

    en.wikipedia.org/wiki/High-energy_astronomy

    High-energy astronomy is the study of astronomical objects that release electromagnetic radiation of highly energetic wavelengths. It includes X-ray astronomy, gamma-ray astronomy, extreme UV astronomy, neutrino astronomy, and studies of cosmic rays. The physical study of these phenomena is referred to as high-energy astrophysics. [1]

  8. Reionization - Wikipedia

    en.wikipedia.org/wiki/Reionization

    As a consequence, Population III stars are currently considered the most likely energy source to initiate the reionization of the universe, [60] though other sources are likely to have taken over and driven reionization to completion. In June 2015, astronomers reported evidence for Population III stars in the Cosmos Redshift 7 galaxy at z = 6.60.

  9. CNO cycle - Wikipedia

    en.wikipedia.org/wiki/CNO_cycle

    The positrons will almost instantly annihilate with electrons, releasing energy in the form of gamma rays. The neutrinos escape from the star carrying away some energy. [2] One nucleus goes on to become carbon, nitrogen, and oxygen isotopes through a number of transformations in a repeating cycle. Overview of the CNO-I Cycle