Search results
Results from the WOW.Com Content Network
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle.Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Hyperbolic may refer to: of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics Hyperbolic geometry, a non-Euclidean geometry; Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola; of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure ...
Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...
The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.
Hyperbolic coordinates plotted on the Euclidean plane: all points on the same blue ray share the same coordinate value u, and all points on the same red hyperbola share the same coordinate value v. In mathematics, hyperbolic coordinates are a method of locating points in quadrant I of the Cartesian plane
The hyperbolic plane (and more generally any Hadamard manifolds of sectional curvature) is -hyperbolic. If we scale the Riemannian metric by a factor λ > 0 {\displaystyle \lambda >0} then the distances are multiplied by λ {\displaystyle \lambda } and thus we get a space that is λ ⋅ δ {\displaystyle \lambda \cdot \delta } -hyperbolic.
The hyperbolic plane is a plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane.