Search results
Results from the WOW.Com Content Network
Revelation uses the number twelve to refer to the number of angels (Rev. 21:14), number of stars (12:1), twelve angels at twelve gates each of which have the names of the twelve apostles inscribed (Rev. 21:12), the wall itself being 12 x 12 = 144 cubits in length (Rev. 21:17) and is adorned with twelve jewels, and the tree of life has twelve ...
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every prime expressed as M p = 2 p − 1 has a corresponding perfect number M p × (M p +1)/2 = 2 p − 1 × (2 p − 1). For example, the Mersenne prime 2 2 − 1 = 3 leads to the corresponding perfect number 2 2 ...
The number 28 depicted as 28 balls arranged in a triangular pattern with the number of layers of 7 28 as the sum of four nonzero squares. Twenty-eight is a composite number and the second perfect number as it is the sum of its proper divisors: 1 + 2 + 4 + 7 + 14 = 28 {\displaystyle 1+2+4+7+14=28} .
In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number. For a given natural number k , a number n is called k -perfect (or k -fold perfect) if the sum of all positive divisors of n (the divisor function , σ ( n )) is equal to kn ; a number is thus perfect if and ...
A semiperfect number that is not divisible by any smaller semiperfect number is called primitive. Every number of the form 2 m p for a natural number m and an odd prime number p such that p < 2 m+1 is also semiperfect. In particular, every number of the form 2 m (2 m+1 − 1) is semiperfect, and indeed perfect if 2 m+1 − 1 is a Mersenne prime.
Notably, absent consensus, please do not add articles about individual perfect numbers themselves (such as 6). Pages in category "Perfect numbers" The following 11 pages are in this category, out of 11 total.
The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2 p−1 M p, where M p is a Mersenne prime. [1] The perfect number 6 comes from p = 2 in this way, as 2 2−1 M 2 = 2 × 3 = 6, and the Mersenne prime 7 corresponds in the same way to the perfect number 28.