Search results
Results from the WOW.Com Content Network
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), [2] GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways.
The human genome contains about 500 protein kinase genes and they constitute about 2% of all human genes. [1] There are two main types of protein kinase. The great majority are serine/threonine kinases, which phosphorylate the hydroxyl groups of serines and threonines in their targets.
Dihydroxyacetone kinase in complex with a non-hydrolyzable ATP analog (AMP-PNP). Coordinates from PDB ID:1UN9. [1]In biochemistry, a kinase (/ ˈ k aɪ n eɪ s, ˈ k ɪ n eɪ s,-eɪ z /) [2] is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates.
The protein kinase domain is a structurally conserved protein domain containing the catalytic function of protein kinases. [2] [3] [4] Protein kinases are a group of enzymes that move a phosphate group onto proteins, in a process called phosphorylation. This functions as an on/off switch for many cellular processes, including metabolism ...
Phosphoglycerate kinase (EC 2.7.2.3) (PGK 1) is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP : 1,3-bisphosphoglycerate + ADP ⇌ glycerate 3-phosphate + ATP. Like all kinases it is a transferase.
Pyruvate dehydrogenase kinase (also pyruvate dehydrogenase complex kinase, PDC kinase, or PDK; EC 2.7.11.2) is a kinase enzyme which acts to inactivate the enzyme pyruvate dehydrogenase by phosphorylating it using ATP. PDK thus participates in the regulation of the pyruvate dehydrogenase complex of which pyruvate dehydrogenase is the first ...
When pyruvate kinase – the enzyme that normally catalyzes the reaction that converts PEP to pyruvate – is knocked out in mutants of Bacillus subtilis, PEPCK participates in one of the replacement anaplerotic reactions, working in the reverse direction of its normal function, converting PEP to OAA. [13]
The MAP2 kinase of this pathway is called Pbs2 (related to mammalian MKK3/4/6/7), the dedicated MAP3 kinases involved in activation are Ssk2 and SSk22. The system in S. cerevisiae is activated by a sophisticated osmosensing module consisting of the Sho1 and Sln1 proteins, but it is yet unclear how other stimuli can elicit activation of Hog1.