Search results
Results from the WOW.Com Content Network
In mathematics, a ranked poset is a partially ordered set in which one of the following (non-equivalent) conditions hold: it is a graded poset, or; a poset with the property that for every element x, all maximal chains among those with x as greatest element have the same finite length, or; a poset in which all maximal chains have the same ...
The rank is consistent with the covering relation of the ordering, meaning that for all x and y, if y covers x then ρ(y) = ρ(x) + 1. The value of the rank function for an element of the poset is called its rank. Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset.
A convex set in a poset P is a subset I of P with the property that, for any x and y in I and any z in P, if x ≤ z ≤ y, then z is also in I. This definition generalizes the definition of intervals of real numbers. When there is possible confusion with convex sets of geometry, one uses order-convex instead of "convex".
Algebraic poset. A poset is algebraic if it has a base of compact elements. Antichain. An antichain is a poset in which no two elements are comparable, i.e., there are no two distinct elements x and y such that x ≤ y. In other words, the order relation of an antichain is just the identity relation. Approximates relation. See way-below relation.
Military rank; Grade (surname) (includes a list of people with the name) Grade, Cornwall, a village in the UK; Coin grading, the process of determining the grade or condition of a coin, the key factor in its value; Food grading, the inspection, assessment and sorting of foods to determine quality, freshness, legal conformity and market value
A k-Sperner poset is a graded poset in which no union of k antichains is larger than the union of the k largest rank levels, [1] or, equivalently, the poset has a maximum k-family consisting of k rank levels. [2] A strict Sperner poset is a graded poset in which all maximum antichains are rank levels. [2]
A tree is a partially ordered set (poset) (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation <. In particular, each well-ordered set (T, <) is a tree. For each t ∈ T, the order type of {s ∈ T : s < t} is called the height of t, denoted ht(t, T).
Thus, an equivalent definition of the dimension of a poset P is "the least cardinality of a realizer of P." It can be shown that any nonempty family R of linear extensions is a realizer of a finite partially ordered set P if and only if, for every critical pair (x,y) of P, y < i x for some order < i in R.