Search results
Results from the WOW.Com Content Network
Lattice models in biophysics represent a class of statistical-mechanical models which consider a biological macromacromolecule (such as DNA, protein, actin, etc.) as a lattice of units, each unit being in different states or conformations.
A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as 1 / n of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain 1 / 8 of each of them. [3]
The history of aperiodic crystals can be traced back to the early 20th century, when the science of X-ray crystallography was in its infancy. At that time, it was generally accepted that the ground state of matter was always an ideal crystal with three-dimensional space group symmetry, or lattice periodicity.
The more precise mathematical definition is that there is never translational symmetry in more than n – 1 linearly independent directions, where n is the dimension of the space filled, e.g., the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two directions.
Note how the size of the carbon appears smaller than the hydrogen. The importance of stereochemistry was not then recognised and the model is essentially topological (it should be a 3-dimensional tetrahedron). Jacobus Henricus van 't Hoff and Joseph Le Bel introduced the concept of chemistry in three dimensions of space, that is, stereochemistry.
For example, a crystal, viewed as a lattice with a single kind of atom located at every lattice point (the simplest basis form), may also be viewed as a lattice with a basis of two atoms. In this case, a primitive unit cell is a unit cell having only one lattice point in the first way of describing the crystal in order to ensure the smallest ...
A lattice system is a set of Bravais lattices. Space groups are classified into crystal systems according to their point groups, and into lattice systems according to their Bravais lattices. Crystal systems that have space groups assigned to a common lattice system are combined into a crystal family.
The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [1] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices. In nature, carbon atoms of the two-dimensional material graphene are arranged in a honeycomb ...