enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Householder transformation - Wikipedia

    en.wikipedia.org/wiki/Householder_transformation

    Householder transformations are widely used in numerical linear algebra, for example, to annihilate the entries below the main diagonal of a matrix, [2] to perform QR decompositions and in the first step of the QR algorithm. They are also widely used for transforming to a Hessenberg form.

  3. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    This is an example of linear transformation. When P does not coincide with the origin, point reflection is equivalent to a special case of homothetic transformation: homothety with homothetic center coinciding with P, and scale factor −1. (This is an example of non-linear affine transformation.)

  4. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  5. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.

  6. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  7. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  8. Transformation (function) - Wikipedia

    en.wikipedia.org/wiki/Transformation_(function)

    In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. [ 2 ] [ 3 ] [ 4 ] Examples include linear transformations of vector spaces and geometric transformations , which include projective transformations , affine transformations , and ...

  9. Transformation geometry - Wikipedia

    en.wikipedia.org/wiki/Transformation_geometry

    The first real transformation is reflection in a line or reflection against an axis. The composition of two reflections results in a rotation when the lines intersect, or a translation when they are parallel. Thus through transformations students learn about Euclidean plane isometry. For instance, consider reflection in a vertical line and a ...