enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. List of eponymous laws - Wikipedia

    en.wikipedia.org/wiki/List_of_eponymous_laws

    Mendel's second law, the law of independent assortment, states that different traits will be inherited independently by the offspring. Menzerath's law , or Menzerath–Altmann law (named after Paul Menzerath and Gabriel Altmann ), is a linguistic law according to which the increase of a linguistic construct results in a decrease of its ...

  4. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  5. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.

  6. Orthotropic material - Wikipedia

    en.wikipedia.org/wiki/Orthotropic_material

    Wood is an example of an orthotropic material. Material properties in three perpendicular directions (axial, radial, and circumferential) are different. In material science and solid mechanics, orthotropic materials have material properties at a particular point which differ along three orthogonal axes, where each axis has twofold rotational ...

  7. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.

  8. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    Another physical setting for derivation of the wave equation in one space dimension uses Hooke's law. In the theory of elasticity, Hooke's law is an approximation for certain materials, stating that the amount by which a material body is deformed (the strain) is linearly related to the force causing the deformation (the stress).

  9. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for short