Ad
related to: arithmetic geometry examples with solutions answer
Search results
Results from the WOW.Com Content Network
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. [1] Arithmetic geometry is centered around Diophantine geometry , the study of rational points of algebraic varieties .
An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.
This is a linear Diophantine equation, related to Bézout's identity. + = + The smallest nontrivial solution in positive integers is 12 3 + 1 3 = 9 3 + 10 3 = 1729.It was famously given as an evident property of 1729, a taxicab number (also named Hardy–Ramanujan number) by Ramanujan to Hardy while meeting in 1917. [1]
Via the analogy of function fields vs. number fields, it relies on techniques and ideas from algebraic geometry. Moreover, the study of higher-dimensional schemes over Z instead of number rings is referred to as arithmetic geometry. Algebraic number theory is also used in the study of arithmetic hyperbolic 3-manifolds.
Fulton–Hansen connectedness theorem (algebraic geometry) Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics) Fundamental theorem of arithmetic (number theory) Fundamental theorem of calculus ; Fundamental theorem on homomorphisms (abstract algebra)
Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, [1] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. [2]
Ad
related to: arithmetic geometry examples with solutions answer