enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  3. Data analysis for fraud detection - Wikipedia

    en.wikipedia.org/wiki/Data_analysis_for_fraud...

    Hybrid knowledge/statistical-based systems, where expert knowledge is integrated with statistical power, use a series of data mining techniques for the purpose of detecting cellular clone fraud. Specifically, a rule-learning program to uncover indicators of fraudulent behaviour from a large database of customer transactions is implemented.

  4. Data preparation - Wikipedia

    en.wikipedia.org/wiki/Data_preparation

    Given the variety of data sources (e.g. databases, business applications) that provide data and formats that data can arrive in, data preparation can be quite involved and complex. There are many tools and technologies [5] that are used for data preparation. The cost of cleaning the data should always be balanced against the value of the ...

  5. Artificial intelligence engineering - Wikipedia

    en.wikipedia.org/wiki/Artificial_intelligence...

    Data acquisition and preparation are critical stages regardless of the development method chosen, as the performance of any AI system relies heavily on high-quality, representative data. For systems built from scratch, engineers must gather comprehensive datasets that cover all aspects of the problem domain, ensuring enough diversity and ...

  6. Factor analysis of information risk - Wikipedia

    en.wikipedia.org/wiki/Factor_analysis_of...

    Factor analysis of information risk (FAIR) is a taxonomy of the factors that contribute to risk and how they affect each other. It is primarily concerned with establishing accurate probabilities for the frequency and magnitude of data loss events. It is not a methodology for performing an enterprise (or individual) risk assessment. [1]

  7. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1] Data is collected and analyzed to answer questions, test hypotheses, or disprove theories. [11] Statistician John Tukey, defined data analysis in 1961, as:

  8. Data binning - Wikipedia

    en.wikipedia.org/wiki/Data_binning

    Data binning, also called data discrete binning or data bucketing, is a data pre-processing technique used to reduce the effects of minor observation errors. The original data values which fall into a given small interval, a bin , are replaced by a value representative of that interval, often a central value ( mean or median ).

  9. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.

  1. Related searches data preparation vs preprocessing techniques in statistics based on risk

    data preprocessingdata mining pre processing