Search results
Results from the WOW.Com Content Network
In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation. Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function.
The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions. On the unit interval [,], given a starting point at = and an ending point at = with starting tangent at = and ending tangent at =, the polynomial can be defined by = (+) + (+) + (+) + (), where t ∈ [0, 1].
Hermite interpolation problems are those where not only the values of the polynomial p at the nodes are given, but also all derivatives up to a given order. This turns out to be equivalent to a system of simultaneous polynomial congruences, and may be solved by means of the Chinese remainder theorem for polynomials.
This eigenvalue problem is called the Hermite equation, although the term is also used for the closely related equation ″ ′ =. whose solution is uniquely given in terms of physicist's Hermite polynomials in the form () = (), where denotes a constant, after imposing the boundary condition that u should be polynomially bounded at infinity.
Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [ 4 ] The function depends on three parameters, the input x , the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.
Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.
Hermite polynomials, Hermite interpolation, Hermite normal form, Hermitian operators, and cubic Hermite splines are named in his honor. One of his students was Henri Poincaré. He was the first to prove that e, the base of natural logarithms, is a transcendental number.
In mathematics, a spline is a function defined piecewise by polynomials. In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomials, while avoiding Runge's phenomenon for higher degrees.