Search results
Results from the WOW.Com Content Network
The domains will remain aligned when the external field is removed, and sum to create a magnetic field of their own extending into the space around the material, thus creating a "permanent" magnet. The domains do not go back to their original minimum energy configuration when the field is removed because the domain walls tend to become 'pinned ...
Magnetostriction is a property of magnetic materials that causes them to change their shape or dimensions during the process of magnetization.The variation of materials' magnetization due to the applied magnetic field changes the magnetostrictive strain until reaching its saturation value, λ.
A magnetic shape-memory alloy (MSMA) is a type of smart material that can undergo significant and reversible changes in shape in response to a magnetic field. This behavior arises due to a combination of magnetic and shape-memory properties within the alloy, allowing it to produce mechanical motion or force under magnetic actuation.
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
Paramagnetic materials have a weak induced magnetization in a magnetic field, which disappears when the magnetic field is removed. Ferromagnetic and ferrimagnetic materials have strong magnetization in a magnetic field, and can be magnetized to have magnetization in the absence of an external field, becoming a permanent magnet. Magnetization is ...
This is the case for gold, which has a magnetic susceptibility less than 0 (and is thus by definition a diamagnetic material), but when measured carefully with X-ray magnetic circular dichroism, has an extremely weak paramagnetic contribution that is overcome by a stronger diamagnetic contribution.
A magnet created by AI could transform green technology by eliminating the need for rare-earth metals, offering a sustainable and cost-effective alternative.
The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles. There are two simplified models for the nature of these dipoles: the magnetic pole model and the Amperian loop model .