Search results
Results from the WOW.Com Content Network
German mathematician Carl Friedrich Gauss said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theory also studies the natural, or whole, numbers. One of the central concepts in number theory is that of the prime number , and there are many questions about primes that appear simple but whose ...
Mathematical models are used in applied mathematics and in the natural sciences (such as physics, biology, earth science, chemistry) and engineering disciplines (such as computer science, electrical engineering), as well as in non-physical systems such as the social sciences [1] (such as economics, psychology, sociology, political science). It ...
In mathematics, the pigeonhole principle states that if n items are put into m containers, with n > m, then at least one container must contain more than one item. [1] For example, of three gloves, at least two must be right-handed or at least two must be left-handed, because there are three objects but only two categories of handedness to put ...
The 18th-century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field.His seminal work had a profound impact in numerous areas of mathematics and he is widely credited for introducing and popularizing modern notation and terminology.
Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science, and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation.
Precalculus prepares students for calculus somewhat differently from the way that pre-algebra prepares students for algebra. While pre-algebra often has extensive coverage of basic algebraic concepts, precalculus courses might see only small amounts of calculus concepts, if at all, and often involves covering algebraic topics that might not have been given attention in earlier algebra courses.
The history of computational thinking as a concept dates back at least to the 1950s but most ideas are much older. [6] [3] Computational thinking involves ideas like abstraction, data representation, and logically organizing data, which are also prevalent in other kinds of thinking, such as scientific thinking, engineering thinking, systems thinking, design thinking, model-based thinking, and ...
Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics.As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics.