Search results
Results from the WOW.Com Content Network
In coordination chemistry, a coordinate covalent bond, [1] also known as a dative bond, [2] dipolar bond, [1] or coordinate bond [3] is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal ions to ligands involves this kind of interaction. [4]
If, in the alternative definition, θ is chosen to run from −90° to +90°, in opposite direction of the earlier definition, it can be found uniquely from an arcsine, but beware of an arccotangent. In this case in all formulas below all arguments in θ should have sine and cosine exchanged, and as derivative also a plus and minus exchanged.
Associated with any coordinate system is a natural choice of coordinate basis for vectors based at each point of the space, and covariance and contravariance are particularly important for understanding how the coordinate description of a vector changes by passing from one coordinate system to another.
Pages for logged out editors learn more. Contributions; Talk; Coordinate bond
A manifold can be constructed by giving a collection of coordinate charts, that is, a covering by open sets with homeomorphisms to a Euclidean space, and patching functions [clarification needed]: homeomorphisms from one region of Euclidean space to another region if they correspond to the same part of the manifold in two different coordinate ...
In chemistry, the Z-matrix is a way to represent a system built of atoms.A Z-matrix is also known as an internal coordinate representation.It provides a description of each atom in a molecule in terms of its atomic number, bond length, bond angle, and dihedral angle, the so-called internal coordinates, [1] [2] although it is not always the case that a Z-matrix will give information regarding ...
In the Cartesian coordinate system, brackets are used to specify the coordinates of a point. For example, (2,3) denotes the point with x -coordinate 2 and y -coordinate 3. The inner product of two vectors is commonly written as a , b {\displaystyle \langle a,b\rangle } , but the notation ( a , b ) is also used.
A translation moves every point of a figure or a space by the same amount in a given direction. In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction.